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Learning large-margin halfspaces
• We are given a sample set of ! unit vectors " ∈ ℝ% labelled 

with & ∈ {±1}.
+ = ("., &.), … , ("2, &2) ∈ ℝ%×{±1}
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• The samples are assumed to be drawn from a distribution 
4 with margin 5, i.e., there exists a halfspace defined by 
the unit vector 6∗, such that & ⋅ 6∗, " ≥ : > 0 for all 
", & ∼ 4. Sample Complexity Time Privacy
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We present 

differentially private 

algorithms for learning a 

large-margin halfspace, 

with sample complexity 

that depends only on the 

margin of the data, and 

not on the dimension.
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• Goal: Design an D, L, : −PAC learner: an algorithm that 
given a sample set + ∼ 42 drawn from any distribution 4
with margin : outputs a classifier V6 such that with 
probability 1 − L, has error at most D, that is,

Pr
Y,Z ∼[

& ⋅ V6, " < 0 ≤ D.

Differential Privacy [DMNS06]
A randomized algorithm > is E, M − differentially private 

(DP) if for all neighboring datasets +, +′ differing in one point, 
and for all measurable output sets `,
Pr > + ∈ ` ≤ aA Pr > +b ∈ ` + M.

Can we design a differentially private 
d, e, 5 − learner whose sample complexity 

does not depend on the dimension f?

• Lower Bound (via a packing argument): Any E, 0 − DP algorithm for 
learning a large-margin halfspace (with constant classification error D) 
requires Ω(1/E:F) samples.

Our results
• We present two differentially private D, L, : −PAC learners that use 

R̀ 1/DE:F samples:
• An E, M − DP algorithm that runs in polynomial time with respect to 

the dimension N and the rest of the parameters .
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• An E, 0 −DP algorithm that runs in exponential time in 1/:F.

Techniques
• Dimensionality Reduction: Pick a random matrix > ∈ ℝh×% and modify 

each sample " ↦ >"/ >" F to be in the reduced space of dimension 
j = `(ln(!/DL)/:F). W.h.p., the new sample set still has margin 0.96:. 
• The E, M − DP learner >?,@,A,B,C runs a differentially private ERM

algorithm (e.g. the noisy stochastic gradient descent of [BST14]).
• The E, 0 −DP learner >?,@,A,C runs the Exponential Mechanism over a 
:/10 − Net of hypotheses.

• For ! = R̀ 1/DE:F , both algorithms return a hypothesis with empirical 
error at most D/4, which extends via a generalization bound to true error 
at most D.

Conclusion
• Yes. There exist differentially private algorithms for learning a large-

margin halfspace, with sample complexity R̀ 1/DE:F , independent of the 
dimension N of the data.

• This is comparable to the sample complexity without privacy, which is 
O(1/D:F).

• For (E, 0)-DP, we prove that the dependence of the sample complexity on 
the margin and the privacy parameter is optimal.


