Efficient Private Algorithms for Learning Halfspaces

with $y \in \{\pm 1\}$.

 $(x, y) \sim D$.

probability $1 - \beta$, has error at most α , that is,

Learning large-margin halfspaces **Our results** We are given a sample set of *n* unit vectors $x \in \mathbb{R}^d$ labelled We present two differentially private (α, β, γ) –PAC learners that use $\tilde{O}(1/\alpha\epsilon\gamma^2)$ samples: $S = \{(x_1, y_1), \dots, (x_n, y_n)\} \in (\mathbb{R}^d \times \{\pm 1\})^n$ An (ϵ, δ) – DP algorithm that runs in polynomial time with respect to the dimension d and the rest of the parameters $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\nu}, \frac{1}{\delta}, \frac{1}{\epsilon}$. The samples are assumed to be drawn from a distribution An $(\epsilon, 0)$ – DP algorithm that runs in exponential time in $1/\gamma^2$. D with margin γ , i.e., there exists a halfspace defined by the unit vector w^* , such that $y \cdot \langle w^*, x \rangle \ge \gamma > 0$ for all **Sample Complexity** $\frac{1}{\alpha \epsilon \gamma^2} \cdot \operatorname{polylog}\left(\frac{1}{\alpha \beta \epsilon \delta \gamma}\right)$ $A_{\alpha,\beta,\epsilon,\delta,\gamma}$ $\frac{1}{\alpha\epsilon\gamma^2} \cdot \operatorname{polylog}\left(\frac{1}{\alpha\beta\epsilon\gamma}\right)$ $A_{\alpha,\beta,\epsilon,\gamma}$ 20 Lower Bound (via a packing argument): Any $(\epsilon, 0)$ – DP algorithm for learning a large-margin halfspace (with constant classification error α) requires $\Omega(1/\epsilon\gamma^2)$ samples. **Goal**: Design an (α, β, γ) –PAC learner: an algorithm that **Techniques** given a sample set $S \sim D^n$ drawn from any distribution D **Dimensionality Reduction**: Pick a random matrix $A \in \mathbb{R}^{m \times d}$ and modify with margin γ outputs a classifier \hat{w} such that with each sample $x \mapsto Ax/||Ax||_2$ to be in the reduced space of dimension $m = O(\ln(n/\alpha\beta)/\gamma^2)$. W.h.p., the new sample set still has margin 0.96 γ . $\Pr_{(x,y)\sim D}[y\cdot\langle \widehat{w},x\rangle<0]\leq\alpha.$ • The (ϵ, δ) – DP learner $A_{\alpha,\beta,\epsilon,\delta,\gamma}$ runs a differentially private ERM algorithm (e.g. the noisy stochastic gradient descent of [BST14]). The $(\epsilon, 0)$ –DP learner $A_{\alpha,\beta,\epsilon,\gamma}$ runs the Exponential Mechanism over a **Differential Privacy** [DMNS06] $\gamma/10$ – Net of hypotheses. A randomized algorithm A is (ϵ, δ) – differentially private • For $n = \tilde{O}(1/\alpha \epsilon \gamma^2)$, both algorithms return a hypothesis with empirical error at most $\alpha/4$, which extends via a generalization bound to true error and for all measurable output sets O, at most α . $\Pr[A(S) \in O] \le e^{\epsilon} \Pr[A(S') \in O] + \delta.$ Conclusion Yes. There exist differentially private algorithms for learning a large-**Can we design a differentially private** margin halfspace, with sample complexity $\tilde{O}(1/\alpha\epsilon\gamma^2)$, independent of the dimension d of the data. This is comparable to the sample complexity without privacy, which is $0(1/\alpha\gamma^2)$. For $(\epsilon, 0)$ -DP, we prove that the dependence of the sample complexity on the margin and the privacy parameter is optimal.

(DP) if for all neighboring datasets S, S' differing in one point, (α, β, γ) – learner whose sample complexity does not depend on the dimension d?

Huy Lê Nguyễn, Jonathan Ullman, Lydia Zakynthinou

Khoury College of Computer Sciences, Northeastern University

Time	Privacy
$\operatorname{poly}\left(d,\frac{\ln(1/\beta\delta)}{\alpha\epsilon\gamma}\right)$	(ϵ, δ)
$\tilde{D}^{(1/\gamma^2)} \cdot \operatorname{poly}\left(d, \frac{\ln(1/\beta\delta)}{\alpha\epsilon\gamma}\right)$	(<i>ε</i> , 0)

We present

differentially private

algorithms for learning a

large-margin halfspace,

with sample complexity

that depends only on the

margin of the data, and

not on the dimension.