Improved Algorithms for Collaborative PAC Learning

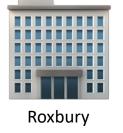
Huy L. Nguyen and Lydia Zakynthinou

1) Collaborative Learning

Introduced by [Blum, Haghtalab, Procaccia, Qiao '17].

Bank Stores

 D_1



Distributions

 D_2

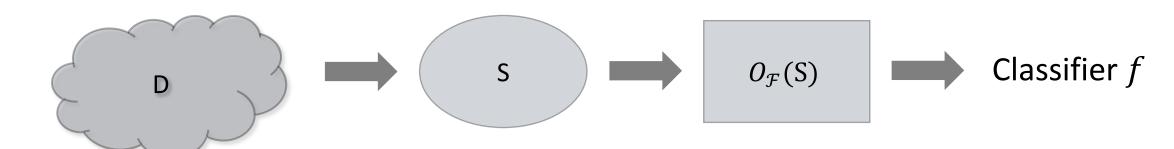
. . .

 D_k

- Goal: Draw labeled samples from all the distributions and use them to learn classifier(s) s.t. with high probability the error is low on all distributions.
 - Personalized: Can return different classifiers.
 - Centralized: Returns a single classifier.

2) Existing Results

• For a single distribution *D*:



- VC dimension of concept class \mathcal{F} : d
- If $|S| = m_{\epsilon,\delta} = O\left(\frac{1}{\epsilon}\left(d\ln\left(\frac{1}{\epsilon}\right) + \ln\left(\frac{1}{\delta}\right)\right)\right)$: Classifier $f = O_{\mathcal{F}}(S)$ minimizes the error on S \Rightarrow has error at most ϵ on D with probability $1 - \delta$.
- If each were to learn a classifier independently, they would need $k \cdot m_{\epsilon,\delta}$ samples in total.
- With collaboration [BHPQ'17]:
 - Personalized $\approx \ln(k) \cdot m_{\epsilon,\delta}$.
 - Centralized $\approx \ln^2(k) \cdot m_{\epsilon,\delta}$.
 - Lower bound: $\Omega\left(\frac{k}{\epsilon}\ln\left(\frac{k}{\delta}\right)\right)$ for $d=\Theta(k)$.

3) Our Algorithms

Centralized Problem

Realizable setting

- Algorithm R1 matches the sample complexity for the personalized variant.
- Algorithm R2 matches the lower bound (better that R1 for most parameter regimes).

Non-realizable setting

- Deterministic classifier with error $(2 + a) \cdot \text{OPT} + \epsilon$, sample complexity matching the realizable setting, where a is constant.
- Randomized classifier with error $(1 + a) \cdot \text{OPT} + \epsilon$, using $\frac{1}{\epsilon}$ times more samples.

Key Idea: Multiplicative Weight Updates

4) Realizable Setting

Algorithm R2

Initialize weights $w_1^{(0)}, ..., w_k^{(0)} = 1$.

 $f^{(r)}$ has error $\epsilon'/2$ for at most 1/8 of the distributions' weight

For r=1 to $t=O(\ln(k/\delta))$ rounds: Draw sample set $S^{(r)}$, $\left|S^{(r)}\right|=m_{\frac{\epsilon l}{4\epsilon'},\delta}$ from

$$\widetilde{D}^{(r-1)} = \frac{\sum_{i=1}^{k} w_i^{(r-1)} \cdot D_i}{\sum_{i=1}^{k} w_i^{(r-1)}}.$$

Find a classifier $f^{(r)} = O_{\mathcal{F}}(S)$.

Draw $|T_i| = O(1/\epsilon')$ samples from each distribution, find $G^{(r)} = \{i: err_{T_i}(f^{(r)}) \le 3\epsilon'/4\}.$

Update the weights: $w_i^{(r)} = 2w_i^{(r-1)}$, if $i \notin G^{(r)}$.

Return maj $\{f^{(r)}\}_{r=1}^t$.

For each D_i at least 0.6t

classifiers have error $< \epsilon'$.

Distinguishes between distributions with error $\leq \epsilon'/2$ and $\geq \epsilon'$ with probability 99%.

5) Non-Realizable Setting

- Need a smoother update rule.
- Deterministic:

$$w_i^{(r)} = \left(1 + \min(\frac{\text{err}_{T_i}(f^{(r)}) \cdot a^2}{(1+3a) \cdot \text{err}_{S(r)}(f^{(r)}) + 3\epsilon'}, a)\right) \cdot w_i^{(r-1)}$$

- Return maj $\{f^{(r)}\}_{r=1}^t$
- Randomized:
 - $w_i^{(r)} = \left(1 + \frac{\operatorname{err}_{T_i}(f^{(r)}) \cdot \epsilon' \cdot a}{(1+3a) \cdot \operatorname{err}_{S(r)}(f^{(r)}) + 3\epsilon'}\right) \cdot w_i^{(r-1)}$
 - Return $f \leftarrow \{f^{(r)}\}_{r=1}^{t}$

Good classifiers are now the ones for which $\operatorname{err}_{T_i}(f^{(r)})$ is low and close to $\operatorname{err}_{D_i}(f^{(r)})$.

For each D_i at least $\approx (1 - a)t$ classifiers are good in the deterministic case, $\approx (1 - \epsilon'a)t$ in the randomized.

6) Conclusion

	Alg 1	Alg 2
Realizable	$\frac{\ln(k)}{\epsilon} \left(d \ln \left(\frac{1}{\epsilon} \right) + k \ln \left(\frac{k}{\delta} \right) \right)$	$\frac{\ln(k/\delta)}{\epsilon} \left(d \ln \left(\frac{1}{\epsilon} \right) + k + \ln \left(\frac{k}{\delta} \right) \right)$
Non- realizable (determ.)	$\frac{\ln(k)}{\epsilon} \left(d \ln\left(\frac{1}{\epsilon}\right) + k \ln\left(\frac{k}{\delta}\right) \right)$	$\frac{\ln(k/\delta)}{\epsilon} \left(d \ln\left(\frac{1}{\epsilon}\right) + k + \ln\left(\frac{k}{\delta}\right) \right)$
Non- realizable (random.)	$\frac{\ln(k)}{\epsilon^2} \left(d \ln\left(\frac{1}{\epsilon}\right) + k \ln\left(\frac{k}{\delta}\right) \right)$	$\frac{\ln(k/\delta)}{\epsilon^2} \left((d+k) \ln\left(\frac{1}{\epsilon}\right) + \ln\left(\frac{k}{\delta}\right) \right)$

- Can we avoid the multiplicative factor of 2 in the non-realizable setting, without using $\frac{1}{\epsilon}$ times more samples?
- Can this classifier be adapted to perform well on a new related distribution?

Northeastern University

College of Computer and Information Science