CWI

PAC-Bayes, MAC-Bayes, and Conditional Mutual Information:

Fast rate bounds that handle general VC classes

Peter Grünwald, Thomas Steinke, Lydia Zakynthinou
CWI \& Leiden University, Google Research (Brain Team) , Northeastern University

1 Universiteit Leiden

Directions of improvement over standard

1. Do not capture fast rates: $\sim \sqrt{\frac{\text { COMPLEXITY }}{n}}$

Rewriting PAC-Bayes excess risk bounds:
$R(A \mid Z ; Z)+\left(\frac{\mathrm{KL}(A \mid Z \| \pi)}{n}\right)^{\gamma}$, where $\gamma \in\left[\frac{1}{2}, 1\right]$.

2. Do not handle general VC classes: bound can be infinite for cases where Uniform Convergence implies generalization [Bassily, Moran, Nachum, Shafer, Yehudayoff 2018], [Livni and Moran 2020]

Conditional Mutual Information:
[Steinke and Zakynthinou 2020] extend MI to handle general VC classes, proposing $C M I_{\mathcal{D}}(A)$. Subsequently [Hellström and Durisi 2020] extend to PAC-Bayes.

Conditional, faster rate PAC-Bayes/MI bound

Theorem. If a γ-Bernstein condition holds, for arbitrary almost exchangeable data-dependent priors $\pi \mid\left\langle\mathrm{Z}_{0}, Z_{1}\right\rangle$
$L\left(A\left(Z_{0}\right) ; \mathcal{D}\right)-L\left(A\left(Z_{0}\right) ; Z_{0}\right) \unlhd$
$\left(2-\frac{1}{\gamma}\right) \cdot R\left(A\left(Z_{0}\right) ; Z_{0}\right)+\left(\frac{\mathbb{E}_{Z_{1}}\left[K L\left(A\left(Z_{0}\right) \| \pi \mid\left\langle Z_{0}, Z_{1}\right\rangle\right]\right.}{n}\right)^{\gamma}$
\(\left.\begin{array}{l}Real dataset Z_{0} \sim \mathcal{D}^{n}

Ghost dataset Z_{1} \sim \mathcal{D}^{n}\end{array}\right\}\left\langle\mathrm{Z}_{0}, Z_{1}\right\rangle=\)| $\left\{Z_{1,0}, Z_{1,1}\right\}$ |
| ---: |
| $\left\{Z_{2,0}, Z_{2,1}\right\}$ |
| \vdots |
| $\left\{Z_{n, 0}, Z_{n, 1}\right\}$ |

Claim (VC+New bound). For any class \mathcal{F} with VCdim $=d$, $\exists A$ (ERM with a consistency property) and prior π such that for any $\mathcal{D}, \operatorname{KL}\left(A\left|Z_{0} \| \pi\right|\left\langle Z_{0}, Z_{1}\right\rangle\right) \leq d \log 2 n$
Main Technical Lemma. Let $S \sim \operatorname{Ber}(1 / 2), \bar{S}=1-S$, and $\left|r_{0}\right|,\left|r_{1}\right| \leq 1$. Then for all $\eta<1 / 4$,

$$
r_{\bar{S}}-r_{S} \unlhd C \cdot \eta \cdot r_{\bar{S}}^{2}
$$

Future directions

- Extend to unbounded (e.g. subgaussian) losses.
- Extend to observable bound (now might need to know $\gamma, f^{*}, \mathcal{D}$)

